On the Complexity of UC Commitments
نویسندگان
چکیده
Motivated by applications to secure multiparty computation, we study the complexity of realizing universally composable (UC) commitments. Several recent works obtain practical UC commitment protocols in the common reference string (CRS) model under the DDH assumption. These protocols have two main disadvantages. First, even when applied to long messages, they can only achieve a small constant rate (namely, the communication complexity is larger than the length of the message by a large constant factor). Second, they require computationally expensive public-key operations for each block of each message being committed. Our main positive result is a UC commitment protocol that simultaneously avoids both of these limitations. It achieves an optimal rate of 1 (strictly speaking, 1− o(1)) by making only few calls to an ideal oblivious transfer (OT) oracle and additionally making a black-box use of a (computationally inexpensive) PRG. By plugging in known efficient protocols for UC-secure OT, we get rate-1, computationally efficient UC commitment protocols under a variety of setup assumptions (including the CRS model) and under a variety of standard cryptographic assumptions (including DDH). We are not aware of any previous UC commitment protocols that achieve an optimal asymptotic rate. A corollary of our technique is a rate-1 construction for UC commitment length extension, that is, a UC commitment protocol for a long message using a single ideal commitment for a short message. The extension protocol additionally requires the use of a semi-honest (stand-alone) OT protocol. This raises a natural question: can we achieve UC commitment length extension while using only inexpensive PRG operations as is the case for stand-alone commitments and UC OT? We answer this question in the negative, showing that the existence of a semi-honest OT protocol is necessary (and sufficient) for UC commitment length extension. This shows, quite surprisingly, that UC commitments are qualitatively different from both stand-alone commitments and UC OT.
منابع مشابه
On the Complexity of Additively Homomorphic UC Commitments
We present a new constant round additively homomorphic commitment scheme with (amortized) computational and communication complexity linear in the size of the string committed to. Our scheme is based on the non-homomorphic commitment scheme of Cascudo et al. presented at PKC 2015. However, we manage to add the additive homomorphic property, while at the same time reducing the constants. In fact...
متن کاملImproving Practical UC-Secure Commitments
At Eurocrypt 2011, Lindell presented practical static and adaptively UC-secure commitment schemes based on the DDH assumption. Later, Blazy et al. (at ACNS 2013) improved the efficiency of the Lindell’s commitment schemes. In this paper, we present static and adaptively UC-secure commitment schemes based on the same assumption and further improve the communication and computational complexity, ...
متن کاملHighly-Efficient Universally-Composable Commitments Based on the DDH Assumption
Universal composability (or UC security) provides very strong security guarantees for protocols that run in complex real-world environments. In particular, security is guaranteed to hold when the protocol is run concurrently many times with other secure and possibly insecure protocols. Commitment schemes are a basic building block in many cryptographic constructions, and as such universally com...
متن کاملUC Commitments for Modular Protocol Design and Applications to Revocation and Attribute Tokens
Complex cryptographic protocols are often designed from simple cryptographic primitives, such as signature schemes, encryption schemes, verifiable random functions, and zero-knowledge proofs, by bridging between them with commitments to some of their inputs and outputs. Unfortunately, the known universally composable (UC) functionalities for commitments and the cryptographic primitives mentione...
متن کاملCompact VSS and Efficient Homomorphic UC Commitments
We present a new compact verifiable secret sharing scheme, based on this we present the first construction of a homomorphic UC commitment scheme that requires only cheap symmetric cryptography, except for a small number of seed OTs. To commit to a k-bit string, the amortized communication cost is O(k) bits. Assuming a sufficiently efficient pseudorandom generator, the computational complexity i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014